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Abstract 

The Great Lakes region encompasses the largest freshwater lake network in the world and 

supports a diverse network of agriculture, transportation and tourism.  Recently, Lake Erie has 

experienced increased hypoxia events, which have been attributed to agricultural practices and 

changes in runoff.  Here we examine the projected changes in extreme precipitation events to 

address concerns regarding regional agriculture, surface runoff, and subsequent water quality. 

Precipitation projections within the overall Great Lakes basin (GLB) and the Western Lake Erie 

basin (WLEB) sub-region are examined using climate model simulations of varying spatial 

resolutions to understand historical precipitation and projected future precipitation. We develop 

three model ensembles for the historical period (1980-1999) and the mid-century (2041-2060) 

that cover a range of spatial resolutions and future emissions scenarios, including: (1) 12 global 

model members from the fifth Climate Model Intercomparison Project (CMIP5) using 

Representative Concentration Pathway (RCP) 8.5, (2) 10 regional climate model (RCM) 

members from the North American Regional Climate Change Assessment Program (NARCCAP) 

driven by CMIP3 global models using the A2 emissions scenario, and (3) 2 high resolution 

regional climate model simulations (RCM4) driven by CMIP5 global models using the RCP8.5 

scenario.  For the historical period, all model ensembles overestimate winter and spring 

precipitation, and many of the models simulate a summer drying that is not observed.  At mid-

century, most of the models predict a 10-20% increase in precipitation depending on the time of 

year.  Daily probability distribution functions from three model ensembles reveal spring seasonal 
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increases in high precipitation event probabilities when compared to the historical period, 

suggesting an increase in the frequency of high intensity precipitation at mid-century.  Overall, 

the presence of lakes or higher spatial resolution does not ensure improved representation of 

historical processes, and more complex interactions between large-scale dynamics, local 

feedbacks, and physical parameterizations drive the model spread. 
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1.0 Introduction 

The Laurentian Great Lakes have the largest freshwater lake surface area in the world and 

support a diverse network of agriculture, transportation and tourism.  Precipitation is a key 

element of the water cycle in the Great Lakes Basin [Gronewold et al., 2013; Gronewold and 

Stow, 2014], and the impacts of shifts in seasonal and daily precipitation have been documented 

across the region [Cherkauer and Sinha, 2010; Mishra and Cherkauer, 2011; Michalak et al., 

2013].  The release of greenhouse gases which feedback to a rise in global temperatures are 

associated with changes in precipitation, and are likely to induce more frequent heavy rain and 

flooding events [Karl et al., 2009; Melillo et al., 2014]. The most recent National Climate 

Assessment identifies an increasing regional trend in total precipitation over the Midwestern 

United States since 1991 [Melillo et al., 2014]. Further, for the Midwest and Northeast regions 

that encompass the Great Lakes, the amount of precipitation falling in very heavy events (the 

heaviest 1% of all daily events) has increased by 37% and 71% respectively over the same period 

[Melillo et al., 2014].  Here, we investigate climate model simulations of precipitation 

seasonality and intensity in the Great Lakes Basin and how they are projected to change with 

future climate. 

Climate model simulation of precipitation depends on a suite of atmospheric and terrain-

induced physical processes.  Both the models’ spatial resolution and the inclusion of complex 

terrain and coastlines such as the Great Lakes have a large impact on simulated precipitation.  

Many of the global climate models in the third Climate Model Intercomparison Project (CMIP3; 
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[Meehl et al., 2007]) and the fifth iteration (CMIP5; [Taylor et al., 2012]) have coarse spatial 

resolution such that they do not explicitly represent the Great Lakes.  To increase the resolution 

in complex topographic regions such as the Great Lakes, two common downscaling techniques 

are employed:  dynamical downscaling and statistical downscaling [Wilby et al., 1998]. 

Dynamical downscaling is a technique that uses high-resolution regional models driven by global 

climate model boundary conditions. For example, the North American Regional Climate Change 

Assessment Program (NARCCAP) ensemble of regional climate model simulations was driven 

with initial and lateral boundary conditions obtained from global climate model output from the 

CMIP3 archive [Mearns et al., 2013].  In contrast, statistical downscaling relies on observed 

relationships between large-scale variables and local variables over a historical period, and 

applies these relationships to increase the spatial resolution of existing global climate model 

output. While less computationally intensive than dynamical downscaling, a major drawback of 

statistical downscaling is the stationarity assumption, which requires that the statistical 

relationships remain the same in the observed period and in the future.  

Previous climate and climate impact studies centered around or in the Great Lakes region 

have used either ensembles of global climate model data or downscaled data to understand how 

future precipitation may change in the Great Lakes region.  Using a suite of global models from 

CMIP3, a statistical downscaling study suggests that winter and spring precipitation may 

increase between 20-30% by the end of century (2070-2099) [Hayhoe et al., 2010].   [Patz et al., 

2008] calculated a 10-40% increase in the magnitude of extreme precipitation events in southern 
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Wisconsin also based on CMIP3 model projections.  A study using the NARCCAP ensemble to 

investigate changes across the agriculturally dominated Canadian prairie regions found up to a 

15% increase in spring and summer precipitation as well as change in return periods for rain-

dominated precipitation extremes [Khaliq et al., 2015].  [Vavrus and Behnke, 2014] compared 

precipitation from global models with statistical and dynamically downscaled model output, and 

found a projected increase of annual precipitation < 10% with more seasonal precipitation in all 

seasons except summer, increases in the intensity of daily extreme precipitation events (< 30% 

increase in accumulation), and an even larger change in the return periods of extreme events (up 

to -50%). 

Dynamically downscaled experiments have improved our understanding of the role of 

lake-atmosphere interactions in the present and under future climate conditions. [Bryan et al., 

2015]  used dynamical downscaling with RegCM4 for the Great Lakes region to examine land-

lake-atmosphere feedbacks in a high-resolution ensemble under present day conditions, and 

found that the simulation of lake temperature can introduce biases in simulated precipitation.  

Similar results were found when dynamically downscaling with the Weather Research and 

Forecast model (WRF) [Mallard et al., 2014].  For future climate, [Notaro et al., 2015] used 

dynamically downscaled simulations to show that cold-season precipitation is projected to 

increase due to reductions in lake ice cover, yet the frequency of the lake effect snowstorms is 

expected to decrease.  [Gula and Peltier, 2012] found that a regional model (WRF) and its global 

driving model (the Community Climate System Model (CCSM)) produced different spatial 

This article is protected by copyright. All rights reserved.



 7 

patterns of projected precipitation over the Great Lakes region.  The global model (CCSM) 

projected an increase 15-25% in annual precipitation by midcentury (2050-2060), whereas the 

dynamically downscaled WRF simulations showed a precipitation reduction in the southern 

Great Lakes region and an increase in the northern Great Lakes.  This difference was attributed 

to atmosphere-lake feedbacks.  [d'Orgeville et al., 2014] also used WRF with different physics 

parameterizations, and found that precipitation extremes are expected to increase in the Great 

Lakes region.  Together, these studies highlight that there may be added value in using high-

resolution simulations that accurately resolve the lake and its physical properties, and that global 

models are not likely to capture these regional nuances. 

In this study, we conduct a multi-scale regional analysis of Great Lakes precipitation to 

identify the role of climate model method and grid resolution on precipitation projections.  We 

examine the Great Lakes Basin (GLB) as a whole, which is noted to be difficult to simulate due 

to the treatment of the lakes [Mearns et al., 2013].  We also evaluate the specific subregion of the 

Western Lake Erie Basin (WLEB). The WLEB is the subject of ongoing agricultural 

management studies connected to recurring harmful algal blooms in western Lake Erie, and these 

events are influenced by regional precipitation intensity [Michalak et al., 2013]. Our analysis 

utilizes modeled output from one global model ensemble and two dynamically downscaled 

regional model ensembles. We compare output between a historical period (1980-1999) and high 

emissions scenario experiments for a mid-century period (2041- 2060). We quantify changes in 

precipitation intensity and seasonality in the defined regions using daily and monthly rates to 
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inform future climate change adaptation planning.  Moreover, we highlight areas of confidence 

and uncertainty for the different ensembles to summarize the value of the multi-scale analysis.  

 

2.0  Methods 

The seasonal timing and daily magnitude of precipitation events are two metrics that can 

be used to quantify precipitation impacts.  We use a suite of gridded observation products, 

regional climate model output and global climate model output to assess present-day and future 

projections of precipitation in the Great Lakes region.  We evaluate models during a historical 

time period, defined in this study as 1980-1999 based on overlapping data availability of 

observations and NARCCAP regional climate simulations [Mearns et al., 2013].  For the future 

time period, we evaluate 2041-2060 based on NARCCAP timeslice experiment.  We evaluate the 

seasonal cycle of precipitation (e.g., DJF, MAM, JJA, and SON) for the historical period to 

understand model biases and also for the mid-century period to understand future changes in 

seasonality. To assess extreme precipitation, we use the maximum 1-day precipitation which is a 

common metric used to understand changes in intensity between the two time periods and model 

ensembles.   

2.1 Precipitation observations 

Modeled historical climate data is evaluated with the Climate Prediction Center’s (CPC) 

Daily US Unified Precipitation dataset between 1980 and 1999. The CPC Unified Precipitation 
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dataset uses distance weighting and optimal interpolation methods to resolve observations from 

over 30,000 global observation stations to a 0.25°×0.25° gridded product [Chen et al., 2008].  

The 20-year historical time period was selected based on the revised definition of climatological 

time period by the World Meteorological Organization from a 30-year average to a 20-year 

average [Arguez and Vose, 2011] and the intersection with regional climate model simulations. 

2.2  Global climate model data 

Twelve atmosphere-ocean (AO) models of the Climate Model Intercomparison Project 5 

(CMIP5; [Taylor et al., 2012]) comprise the global climate model ensemble (Table 1), with 

model data accessed through the Earth System Grid Federation’s PCMDI, DKRZ, and NCAR 

nodes.  For the future, we selected the Representative Concentration Pathway 8.5 (RCP 8.5) 

experiment, as present-day emissions are currently following this emissions projection [Peters et 

al., 2013].  Only CMIP5 AO models with daily temporal output for the present-day and RCP8.5 

experiments were selected.  The AO configuration is defined to include interactive atmosphere, 

land surface, ocean and sea ice models as well as aerosol components, and captures water cycle 

feedbacks with the atmosphere [Flato et al., 2013]. 

2.3  Regional climate model data  

Regional climate models, i.e. dynamical downscaling, have the potential advantage of 

preserving physical and dynamical relationships between variables, thus reducing the issue of 

stationarity associated with statistical downscaling [Gutierrez et al., 2013].  These regional, 
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higher resolution simulations require global climate model data or reanalysis data for lateral 

boundary conditions. For our analysis, we use ten regional NARCCAP simulations that provided 

daily precipitation for the present-day and future time periods at 50 km resolution for the A2 

emissions scenario (Table 1).  NARCCAP output was accessed through the Earth System Grid 

Federation PCMDI and NCAR nodes as 3-hourly precipitation fluxes, which were converted to 

daily precipitation rates (mm day-1). The full NARCCAP ensemble includes twelve simulations, 

but two of the simulations (WRFG-CCSM and HRM3-GFDL) use different treatment of the 

lakes in present day and future conditions, making the comparison of present day and future 

precipitation not possible given our focus region.  In addition to the NARCCAP RCM ensemble, 

we also evaluate two RCM simulations at 25 km resolution (RCM-HiRes) with the RegCM4 

[Giorgi et al., 2012], which uses two different CMIP5 GCM RCP8.5 simulations as boundary 

conditions [Bryan et al., 2015] (Table 1).  

2.4 Spatial and temporal averaging 

The gridded observations, global ensembles and regional ensembles were analyzed for 

the Great Lakes basin (GLB; 40°N to 50°N, 75°W to 95°W), and the Western Lake Erie basin 

(WLEB; 40°N to 43°N, 82°W to 85.5°W) (Figure 1).  Each simulation was spatially averaged 

over the GLB and WLEB regions, with the number of grid cells within each region for each 

simulation detailed in Table 1 to highlight the range of resolution within the global and regional 

models. 

This article is protected by copyright. All rights reserved.



 11 

Daily precipitation data were downloaded for the global model simulations, and 3-hourly 

precipitation data from the NARCCAP and RCM-HiRes were downloaded and aggregated to a 

daily basis for present-day (1980-1999) and future (2041-2060) precipitation intensity.  We note 

that two NARCCAP ensemble members (CRCM-CCSM and MM5I-CCSM) did not simulate the 

complete year for 1999 and for these two members we use the present-day period of 1980-1998.  

For seasonal climatology, daily data were averaged to monthly for both the historical and future 

periods. Differences in precipitation rates between the present-day and future time periods were 

calculated from the monthly climatologies.   For intensity, daily precipitation rate probabilities 

were sorted into 15 bins ranging from 0 to 90 mm day-1. To account for the spatial variability 

within the GLB and WLEB averaging regions, maximum precipitation rates within each region 

were also evaluated using 20 bins ranging from 0 to 500 mm day-1. For the WLEB, seasonal and 

daily spring biases were calculated for the historical period to inform runoff sensitivity modeling 

for the Maumee watershed located in northwestern Ohio. Over the historical period, precipitation 

events greater than 24 mm day-1 (99th percentile) were considered “extreme” for the Maumee 

watershed based on comparisons with daily gauge precipitation data between 1981 and 1999. 

 

3.0 Evaluation of Precipitation Seasonality and Intensity 

3.1 Precipitation Seasonality 

3.1.1. Observed Historical Precipitation (1980 – 1999) 
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Observed seasonal precipitation for the GLB and the WLEB sub-regions show a clear 

unimodal pattern with a summer maximum (Figures 2a and 3a, respectively). For the period 

1980-1999, observed annual precipitation over the GLB is 832.6 mm with an annual minimum 

during late winter (30.6 mm month-1 in February) and maximum during summer (99.0 mm 

month-1 in June and 99.4 mm month-1 in July) (Figure 2a). The seasonal cycle is similar in the 

WLEB region, with a similar peak precipitation (97.1 and 97.8 mm month-1, in June and July 

respectively) and the mean minimum precipitation is higher (46.7 mm month-1 in February; 

Figure 3a). Over the WLEB, total annual precipitation of 908.2 mm is slightly higher than the 

GLB region average. For the GLB, the summer season (June-July-August; JJA) includes the 

largest fraction (over one-third) of the averaged annual precipitation (294.6 mm), with just less 

than one-fourth annual precipitation occurring in spring (198.7 mm; March-April-May; MAM). 

Summer also contains the highest fraction of WLEB precipitation (284.8 mm), however spring 

contains over one-fourth of its total precipitation (236.9 mm) (Table 2). 

3.1.2 Modeled Historical Precipitation (1980 – 1999)  

We compare simulated annual and seasonal precipitation from the global and regional 

ensembles with CPC observations averaged over 1980-1999 (Figures 2-3 and Table 2). For the 

GLB basin over the historical period, 11 of the 12 CMIP5 members and 8 of the 10 NARCCAP 

members simulate more annual precipitation than the observed historical value, while both 

RCM-HiRes members have a negative or dry bias.  The GLB averaging region has wet biases in 

both spring and winter in all 12 CMIP5 models and all 10 NARCCAP models (Figure 2a and 
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2b). In both RCM-HiRes members, the seasonality of the modeled precipitation is relatively flat 

as noted by Bryan et al. (2015), with a positive winter bias and a negative summer bias. All of 

the models in the region exhibit a positive winter bias, while the summer bias in these 

simulations may be due to a weak parameterization of convective precipitation.  All ensemble 

members show a wet bias in DJF precipitation ranging from 19.7 mm (17.3%) to 108.3 mm 

(95.2%) (Figure 2a-c), although this may be in part attributed to the low observed values in the 

region influenced by gauge error for solid phase precipitation [Legates and Willmott, 1990].  For 

example, gauge corrections based on the Legates and Willmott data can increase winter 

precipitation in the Great Lakes region by up to 0.5 mm d-1.  The CMIP5 ensemble mean 

overestimates MAM precipitation by 61.0 mm (30.7%), with individual wet model biases 

ranging between 2.3 mm (1.2%) and 112.2 mm (56.5%).  Similar to the global models, the 

NARCCAP ensemble mean shows a positive bias in MAM of 50.4 mm (25.4%) but with a 

narrower range in the model bias (18.3- 96.0 mm). All NARCCAP models show a late 

spring/early summer (MJJ) peak that is stronger than observed (Figure 2b), and indicates that this 

ensemble shifts precipitation earlier in the season than observed and produces too much 

precipitation. In JJA, the inter-ensemble model spread grows, with 14 of the 24 total models 

exhibiting a summer dry bias and the rest exhibiting a wet bias (Figure 2a-c).  As the summer 

progresses into fall, the intermodel CMIP5 spread narrows and individual model biases are 

reduced. In late summer/early fall (ASO), the NARCCAP ensemble reduces precipitation closer 

to observed, but then precipitation increases again in the winter, a feature not evident in the 
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observations (Figure 2b).  For the RCM-HiRes simulations, there is very little amplitude in the 

seasonal cycle, as discussed in Bryan et al. (2015). This leads to a comparatively small spring 

dry (negative) bias of 5.8 mm (-2.9%) in the ensemble mean, although this is largely due to the 

flat seasonal cycle relative to the increase in winter to spring precipitation (Figure 2c).  

For the WLEB region, most models also have a wet annual bias with the exception of one 

CMIP5 model (CSIRO), one NARCCAP model (CRCM-CCSM) and the RCM-HiRes 

simulations (Table 2; Figure 3a-c). The seasonal bias is strongest in MAM for all model 

ensemble means, with a positive bias of 69.9 mm (29.5%) for CMIP5, a positive 60.1 mm 

(25.4%) bias for NARCCAP, and dry bias of 27.8 mm (-11.7%) for RCM-HiRes. The bias of 

individual CMIP5 members is similar to the larger region, falling between 4.7 mm (2.0%) and 

122.9 mm (51.9%), likely due to the differing model processes and wide range of spatial 

resolution in this ensemble. Similar to the GLB, the NARCCAP ensemble produces MAM 

precipitation that ranges close to the CMIP5 models, from 12.1 mm (5.1%) and 112.4 mm 

(47.4%) for individual model members (Figure 3c).  Unlike the other ensembles, the RCM-

HiRes shows a dry bias over land in the region [Bryan et al., 2015] with individual members 

showing a dry bias of 18.3 mm (-7.7%) and 37.2 mm (-15.7%; Figure 3e).   

3.1.2 Modeled Future Precipitation (2041 – 2060) 

With knowledge of the biases in the historical simulations, we examine the relative 

percent change in seasonal precipitation for midcentury (2041-2060) for the GLB and the WLEB 

respectively (Figures 2d-f and 3d-f, respectively). For the GLB, the annual relative change in 
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precipitation is typically positive and does not differ much between ensembles (CMIP5:  -0.7 to 

16.1%, NARCCAP: 4.7 to 10.6%, RCM-HiRes: 6.7 to 14.3%; Figure 2d-f). The projected 

increase in annual precipitation is similar for the WLEB region, however the increase is slightly 

higher in the global and regional ensembles (CMIP5: -5.4 to 17.8%, NARCCAP: 0.0 to 13.9%, 

RCM-HiRes: 0.8 to 12.9%; Figure 3d-f).  

During spring and winter, precipitation is generally projected to increase across all 

ensemble members within both regions (Figures 2 and 3). Ensemble mean changes in MAM 

precipitation are small (7.0-14.7%) for the GLB, with individual models ranging between 1.4-

30.0% for the CMIP5 ensemble, -1.6-12.7% for the NARCCAP ensemble, and 12.5-17.0% for 

the Hi-Res ensemble. For the WLEB, the spring ensemble mean changes have a smaller range 

(8.4-12.8%) with more member variability (CMIP5: -3.6 to 33.6%, NARCCAP: 1.5% to 19.2%, 

Hi-Res: 9.8 to 15.8%). The magnitude of winter precipitation change for the CMIP5 ensemble 

mean is similar for both regions (GLB: 17.4%; WLEB: 17.9%). The NARCCAP and RCM-

HiRes ensemble means, present a lower increase than CMIP5 for the GLB (11.1%, 13.6%, 

respectively). The regional models’ magnitude of increase is slightly higher for the WLEB 

(11.5%, 14.0%; Figure 3d,f).   

The greatest spread in the simulated future precipitation occurs in JJA, with some models 

showing decreases in future summer precipitation and some showing relative increases compared 

to the historical period (Figures 2 and 3). Although the ensemble mean changes show increases 

ranging from 0.9-8.8% in the GLB, in the WLEB, this range is -1.4 to +1.6%. For both the GLB 
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and WLEB, 8 out of the 12 CMIP5 models show an increase in JJA precipitation (GLB: 0.2-

9.3%, WLEB: 1.3-14.1%), while 4 show relative decreases (GLB: 0.2-19.0% decrease, WLEB: 

1.0-20% decrease) (Figures 2d and 3d). For the regional NARCCAP ensemble, there is more 

variability between members although there is a similar spread in JJA between regions, with 7 

models predicting an increase in GLB precipitation and 4 models predicting an increase for the 

WLEB (GLB: 0.5-13.4%, WLEB: 2.5-16.4%, Figures 2-3d). The range of predicted decrease is 

also similar from 3 models in the GLB and 6 models for the WLEB (GLB: 0.3-7.6 decrease, 

WLEB: 3.5-12.7% decrease, Figures 2-3d). The RCM-HiRes simulations are also split on the 

change in JJA precipitation for the WLEB (-8.4 decrease and 9.7% increase), leading to a near 

zero change in precipitation in the ensemble mean whereas they both indicate an increase for the 

GLB (4.9% and 12.8%; Figures 2-3f). 

Overall, the response of seasonal precipitation at the midcentury time period is similar 

across both regions with most ensemble members, with ensemble means indicating an increase 

between 8.5-12.6% in the spring and 11.5-18% in the winter for the WLEB (Figures 2 and 3). 

The overall response of precipitation to the future climate scenarios is more variable during the 

summer and early fall, depending on the ensemble and member.  However, we note that this 

increase is slightly smaller than the model bias in these seasons. This result is consistent with 

[Hayhoe et al., 2010], who used two statistical downscaling techniques for precipitation in the 

Chicago and Great Lakes area and found that that winter and spring precipitation may increase 
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up to 20% before end of century (2070-2099) under the similar A2 (or moderate) emissions 

scenario.  Possible explanations for these changes are explored in Section 4. 

3.2  Precipitation Intensity  

3.2.1  Observed Historical Period Precipitation Intensity (1980-1999) 

We examine daily precipitation rates (or precipitation intensity) over the historical period 

with probability density functions, dividing daily precipitation into 15 equally spaced bins 

spanning 0-90 mm day-1.  We define three categories of events: small (0-5 mm day-1), moderate 

(6-23 mm day-1), and extreme events (e  24 mm day-1).  Simulated precipitation intensity is 

compared with daily CPC gridded observations, although we note that using a gridded product 

for intensity may smooth out individual stations that may experience higher, localized rainfall. 

However, this product provides continuous coverage of historical data for evaluation and a daily 

precipitation value that is spatially consistent with a model grid cell. 

In the GLB region (Figure 4a-d), all ensemble members generally capture the observed 

intensities in all seasons except for DJF, where the models overestimate daily precipitation.  For 

DJF, this suggests that the seasonal wet bias (Section 3.1.2) is due to both more precipitation 

during the moderate events in most of the models (e.g., 6-23 mm day-1) as well as the simulation 

of higher intensity events by some model members (e  24 mm day-1) (Figure 4d). Other seasons, 

such as MAM, show that the models capture the frequency of moderate events (6-23 mm day-1) 

but some model members simulate additional high intensity events (e  24 mm day-1) (Figure 4a).  
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The same pattern is evident in JJA (Figure 4b) and SON (Figure 4c).  When comparing the 

model type in both MAM and DJF, the global models produce more intense events than the 

regional models (Figure 4a-d).  For the RCM_HiRes ensemble, the spatially averaged 

precipitation shows lower mean probability values, consistent with the previously described 

summer season dry bias (Figure 4b). 

For the WLEB subregion, simulated intensities are higher (up to 90 mm day-1) than the 

GLB because of spatial averaging techniques (e.g., the WLEB subregion is 3°×3.5° and the GLB 

is 10°×20°).  With fewer grid cells, more of the individual grid intensities are captured with a 

smaller averaging region, increasing the regionally-averaged intensity (Figure 5a-d).  All model 

ensembles generally capture the JJA and SON moderate range intensities (e.g., 6-23 mm day-1) 

but again have individual members that simulate higher intensity events that reach up to 83 mm 

day-1 (Figure 5b-c).  For MAM and DJF, the models overestimate the observed precipitation in 

the 18-41 mm day-1 range as well as simulating additional, high intensity events (Figure 5a,d).  

For extreme intensity values in the WLEB (defined here as e  24 mm day-1, informed by 

historically modeled streamflow data for the Maumee basin), the relative error in historical 

spring (MAM) probabilities ranged from 75-1175% for CMIP5, 50-667% for NARCCAP, and 

125-181% for RCM-HiRes (Table 2). As in the GLB region, there are several CMIP5 model 

members that show more intense events than the regional models in MAM and JJA (Figure 5a-

b). Summer in the WLEB shows good agreement with historically observed probabilities for 

small to moderate events (d 24 mm day-1), however the simulations include higher events that 
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are not present in the observations (Figure 5b). The CMIP5 mean exceeds the historical range by 

8 bins, equating to almost 48 mm (6 mm per bin) or 1.9 inches (Figure 5b). However, the 

associated probabilities indicate a low frequency of these events with values close to 0.1%, or 1.8 

events per 20 years (Figure 5b). 

3.2.2 Future Precipitation Intensity (2041-2060) 

We examine the change in daily precipitation rate probabilities between the historical 

(1980-1999) and future (2041-2060) periods for the three ensembles (Figures 4e-h and 5e-h). We 

calculate the change in probability as the difference of the future probability with that of the 

historical probability. For example, from the ~1800 days included in MAM over 20 years, a 

typical extreme event may have a 1% probability.   This is equivalent to about 18 events over the 

20-year period for that season. If the probability of such an extreme event increased relatively by 

0.1%, that would increase total MAM extreme events by 1.8 events between the 20 year periods.   

For small precipitation events, the GLB ensemble means show negative changes across all 

seasons (1.0-3.4% decrease in probability; Figure 4e-h). The WLEB ensemble means for small 

events show a similar result for the spring and winter seasons, however with a slightly smaller 

range (0.9-1.9% decrease), while summer and fall have a mixed sign of change (Figure 5e-h).  

For each of the GLB ensemble means, moderate daily precipitation events across all seasons 

show the largest positive change (1.0-3.4%), with extreme events showing no change (Figure 4e-

h).  This is in part due to the spatial averaging used in this study, where averaging over a large 

region causes a relatively sharp drop off in the tail end of the probability distribution function 
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(24-90 mm day-1) for each ensemble. As compared to the GLB, the WLEB ensemble means also 

show less consensus for the sign of moderate events, and with about half of the models showing 

overall positive changes (0.1-0.7%) for spring and winter extreme events which translate to a 

projected increase of about 1-12 more events over the 20-year midcentury period (Figure 5e-h).  

  

4.0  Discussion  

To place these results in context, we discuss several factors related to the spatial 

averaging employed in this study, the climate model resolution and the model representation of 

physical processes such as lakes to understand model biases and projections of future 

precipitation in the GLB and WLEB regions.   

4.1 Spatial Averaging Effects 

Spatial averaging across regions effectively smooths the extreme daily events, especially 

for the GLB region. For example, GLB intensity values (Figure 4a-d) are lower than the WLEB 

basin (Figure 5a-d) and may underrepresent the intense events in the overall GLB region, 

suggesting that the larger spatial extent of the GLB may reduce the calculated precipitation 

intensity.  To understand how the spatial averaging affects the calculation of the extremes, we 

evaluate the maximum daily precipitation rates across each region.  The maximum daily 

precipitation intensity is defined as the greatest intensity that occurs within any individual grid 

cell in the region during the selected season over all years. The probability distribution of these 
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maxima shows the likelihood of the maximum possible precipitation that can occur within each 

averaging region (Figure 6 for the GLB and Figure 7 for the WLEB). For example, in the GLB in 

MAM, observations show a 0.05% probability in the 150-174 mm d-1 bin, which indicates that at 

least one grid cell in the GLB reached a daily precipitation value in this range.  This probability 

is equivalent to about one spring event of this intensity over the 20-year averaging period (1980-

1999).  This provides a metric for the spatial distribution of precipitation intensity at any point 

within the region and can be useful to compare with the regional averages (Figures 4 and 5).   

 Over the GLB region, CMIP5 models tend to underestimate the maximum probability 

values (Figure 6a-d).   Generally, the regional model ensembles (NARCCAP and RCM_HiRes) 

simulate a larger number of extreme events that more accurately captures the maximum daily 

precipitation distribution (Figure 6e-l).   The dynamically downscaled models do tend to have 

some models that overestimate the maximum intensity, most notably in the spring (Figure 6e and 

6i) and summer (Figure 6f and 6j). In the fall, not all NARCCAP ensemble members capture the 

event range and only one model (HRM3-HadCM3) extends beyond the historical CPC range 

(Figure 6g) while the HiRes members are split for larger event sizes (above 50 mm d-1) (Figure 

6k). In the winter, the NARCCAP ensemble shows a spread around historical probabilities 

(Figure 6h) while the HiRes members have more occurrences of extreme events above 50 mm d-1 

(Figure 6l).  In the WLEB region (Figure 7), the dynamically downscaled models also show an 

improvement over the global models in the simulation of intense precipitation. NARCCAP 

extends the range beyond CPC probabilities for all WLEB seasons (Figure 7e-f), while the HiRes 
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shows a higher intensities for WLEB summer and winter (Figure 7j and 7l).  The tendency for 

the NARCCAP models to produce large extremes in excess of observed values has been noted in 

other studies that evaluated the model performance over the entire United States [Caldwell, 

2010; Kawazoe and Gutowski, 2013b; Wehner, 2013].  Here, these results show that the regional 

models produce some grid cells with very high intensity events (e.g. > 250 mm d-1 in JJA), but 

overall, the finer resolution models better capture the high intensity events across the two 

regions.  

To further evaluate the effects of area averaging, we also examined the spatial 

distribution of the 99th percentile precipitation (considering rain days on which the precipitation 

was over 1 mm day-1) in the WLEB region to determine if certain grid points have substantially 

higher precipitation extremes.  Evaluation of seasonal averages shows no appreciable spatial 

pattern in seasons outside of DJF.  Figure 8 shows the 99th percentile for the ten NARCCAP 

models and the CPC observations.  In several of the NARCCAP members, and to some extent in 

the observations, the 99th percentile precipitation is largest near the lakes, suggesting these larger 

extremes are related to the production of lake effect snow in winter. For some models, the lake 

temperatures are interpolated from the nearest sea surface temperatures.  [Bryan et al., 2015] 

showed that southern Great Lakes SSTs lake temperatures were biased warm compared to 

observations when using this method, enhancing precipitation near the lake in this model. 

Examination of the patterns of the GCMs did not reveal similar lake effects (not shown), likely 
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because the grid spacing is too large to simulate lake-precipitation feedbacks or the lakes are 

absent, as discussed below. 

4.2 Resolution Effects 

Another potential factor in the differences in precipitation intensity is the climate model 

resolution.  In the GLB region, the CMIP5 ensemble mean has higher intensities than the 

dynamically downscaled models (Figure 4a-d) and this effect is magnified for the WLEB 

(Figures 5a-d). Within the CMIP5 ensemble, the CMCC-CMS model consistently places non-

zero probabilities in higher intensity bins beyond those of the historical record for both regions 

(individual model members not shown in Figures 4 and 5).   

For the WLEB we evaluated two simulations with the CMCC model, the CMS version 

(1.875° resolution, which resolves the stratosphere) and the finer CMCC-CM (0.75° resolution, 

the highest resolution CMIP5 model in our ensemble).  While these model versions have several 

parameterization differences, the increase in horizontal spatial resolution does not explain the 

historical bias for intense daily events.  The two resolution versions show similar bias in the 

spring extreme event probability (1075%, 1175% respectively; Table 2).  However, CCSM4 and 

CESM1-CAM5 (0.9 x 1.25° each) are also relatively high resolution in our CMIP5 ensemble 

(187 grid cells for the WLEB), but show a larger difference in extreme event probability bias 

(75% and 300% respectively; Table 2). Interestingly, the CSIRO model, which has a coarser 

resolution equal to the CMCC-CMS model (1.875°), has less bias for extreme daily events 

(125% and 1075%, respectively; Table 2) and also exhibits a lower bias for MAM seasonal 
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precipitation than CMCC-CMS (22.0% and 41.4%, respectively; Table 2).  While it is not 

surprising that the models produce very different precipitation distributions due to large number 

of variable parameterizations in the model (e.g., convective precipitation, microphysics and land 

surface), the comparison here shows that higher resolution alone within the CMIP5 ensemble 

does not improve the precipitation intensity bias simulated in the region.  This is consistent with 

other studies, e.g., [Kawazoe and Gutowski, 2013a] found that CMIP5 model resolution could 

not explain biases in precipitation intensity over the upper Mississippi region in the winter.  

Additionally, six global models show relatively low bias for spring precipitation (CCSM4 at 

16.6%, CESM1 at 7.2%, CSIRO at 22.0%, FGOALS at 18.2%, HadGEM2 at 24.7%, and 

MIROC at 2.0% respectively; Table 2), which is similar to several of the regional models for this 

metric (about 7-25%; Table 2).   

For the WLEB spring and summer seasons (Figure 5a-b), observed intensities reach up to 

30-35 mm day-1.  However, 10 of the CMIP5 models place probabilities in the next available bin 

(36-41 mm day-1) for spring, summer and fall (9 models for winter), showing that most of the 

CMIP5 ensemble overemphasizes the magnitude of intense events by at least 6 mm day-1 (0.2 

inch day-1) for these seasons. Multiple models go beyond this lower end bias and have nonzero 

probabilities in even higher bin ranges, with half of the CMIP5 ensemble represented in the 42-

47 mm day-1 range for spring and fall, 8 models for summer and 3 models for winter producing a 

bias of at least 12 mm day-1 (0.5 inch day-1). Further, 7 models in the CMIP5 ensemble place 

nonzero probabilities in the 48-53 mm day-1 range giving a bias of at least 18 mm day-1 for the 
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summer period.  In contrast, the regionally averaged RCM simulations overall do not exhibit 

such a high intensity, with lower average probabilities across all seasons in both regions.  This 

suggests that the maximum probabilities with very high intensities (Figures 6 and 7) are likely 

occurring over a very small number of grid cells at different times and locations, and these grid 

cells do not affect the overall regional average (Figures 4 and 5).  For example, HRM-HadCM 

(Figure 8k) shows that a grid cell north of Lake Erie (1 of 56 grid cells in the WLEB region in 

this model, or 1.78% of the model grid cells) has the highest precipitation over the WLEB 12% 

of the time. 

4.3 Lake Representation  

Even if topographic features such as the lakes are better resolved at higher resolution, 

physical parameterizations may not result in better evaluation with observations [Caldwell, 2010; 

Rauscher et al., 2010]. The representation of lakes in the region is known to play an important 

role in regional precipitation [Notaro et al., 2013a; Suriano and Leathers, 2016]. One advantage 

of higher resolution models would be to include these important features at the lower model 

boundary condition, but resolution alone does not determine whether or not the surface is 

represented as bodies of water.  In most of the global model members of the CMIP5 ensemble (9 

of the 12 models), the Great Lakes are not differentiated from land (Table 1).  In the NARCCAP 

ensemble, the lakes are represented in terms of land cover but have different treatment of lake 

processes that drive lake temperatures and the presence of ice.  For example, most of the 

NARCCAP models do not use a lake model and interpolate lake surface temperatures from 
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nearby sea surface temperatures (Table 1).  As a result, there is no prognostic calculation of lake 

ice coverage.  Three members of the NARCCAP ensemble (CRCM-CGCM3, CRCM-CCSM 

and WRFG-CGCM3) simulate dynamic lake ice across the Great Lakes. 

We group model members across the multiple ensembles used in this study to understand 

the role of lake representation in the simulation of regional precipitation. The 15 models that 

represent lakes include 3 CMIP5 models (Table 1), and all 12 regional scale models (10 

NARCCAP and 2 RCM HiRes). The ensemble without lakes includes the remaining 9 CMIP5 

models (Table 1). For the historical period, the multi-model average seasonal cycle between the 

models that include lakes versus those that do not is similar over the GLB (Figure 9a,c), yet there 

is much more variability among the members of seasonal precipitation in the lake ensemble. 

Both sets of models show wet biases in the winter and spring for the GLB, as well as slight dry 

bias in the late summer and early fall.  The model bias improvement due to the lakes is 

inconsistent across seasons, with the spring bias slightly reduced by the models that include lakes 

(from a bias of 53.9 to 49.3 mm, for models without lakes and with lakes, respectively) and the 

winter bias slightly increased (from 52.4 to 64.0 mm).   

For the WLEB, there are greater differences in the monthly precipitation between the 

simulations with lakes (Figure 9b) and without lakes (Figure 9d). The summer-fall transition 

period shows a different response, with a small dry ASO bias for the models with lakes (0.4 mm 

below the historical mean) while the models without lakes have a wet bias of 20.9 mm (Figure 

9b,d), suggesting that the lake feedback during this transition period is weak. Both sets of models 
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still overestimate winter precipitation across both regions by 54.4 mm for models with lakes and 

51.0 mm for models without lakes (Figure 9c and d).  This wet bias could be attributed to the 

lack of dynamic lake ice in many simulations, which would suppress winter precipitation 

[Wright et al., 2013].  In addition, the lack of dynamic lake ice could also affect the projected 

change in precipitation, where less ice in the future may lead to greater winter precipitation. 

The NARCCAP ensemble also explores the differences between local parameterizations 

and driving large-scale global conditions. For example, the difference in precipitation between 

the two similar RCM3 simulations from the NARCCAP ensemble (RCM3-CGCM3 and RCM3-

GFDL, Figure 9b) is larger than between GCM models with lakes, with the RCM3-CGCM3 

showing a large springtime precipitation bias of over 60 mm (Figure 9b).  Other model pairs with 

different boundary conditions (e.g., ECP2-GFDL and ECP2-HadCM3; CRCM-CCSM and 

CRCM-CGCM3; MM5I-CCSM and MM5I-HadCM3) also show that the driving boundary 

conditions play an important role.  In the CRCM simulations that have the most complex lake 

treatment, the summer drying in the WLEB is more pronounced in the CRCM-CCSM simulation 

(47 mm in August as compared to the observed value of 90 mm) than in the CRCM-CGCM3 

simulation (74 mm) (Figure 9b).   Interestingly, the other regional model driven by the CCSM 

(MM5I-CCSM) does not have such a strong summer dry bias and is similar to the other CRCM 

member.  This suggests that while the driving global boundary conditions are important, the 

interactions between the regional and local processes may be the dominant driver in determining 

precipitation rates.  Overall, this suggests that the inclusion of lakes alone does not necessarily 
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improve model simulations of precipitation, and that the accurate representation of lake 

processes (e.g., [Notaro et al., 2013a; Mallard et al., 2015]) and their interactions with large-

scale dynamics are as important as including the lakes themselves. 

 

 

5.0  Conclusions 

We evaluate the simulation of seasonal and daily precipitation for a suite of climate 

models at varying resolutions for present-day and future conditions, and use resolution and 

configuration options to understand model biases and the range in simulated future changes in 

precipitation.  Using seasonality as a metric, each ensemble shows positive (wet) winter and 

spring biases for the historical period, with greater intermodel variability in the summer and fall.  

At mid-century, most models show an increase in spring season precipitation of 7-18%, in 

agreement with prior studies in the Midwest using the CMIP3 ensemble and other regional 

climate models (e.g., Hayhoe et al., 2010; Vavrus and Behnke, 2014). All model ensembles 

including both the global CMIP5 simulations and regional simulations show a mixed signal for 

future summer drying.  Compared to historical daily precipitation intensity, all models 

overestimate the observed intense precipitation events in winter and spring. Mid-century 

projection consensus for each region shows small increases in moderate and intense daily spring 

events. 
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This analysis highlights model biases in the region and informs the application of future 

climate data to specific problems.  Potentially, these results highlight the need to understand the 

springtime bias evident in almost all of the global models and can contribute to improved 

representations of regional processes feedbacks and physical features. The advantage of 

increased resolution between the global and regional ensembles depends largely on location, 

boundary conditions and physical parameterizations. For the Great Lakes region, increased 

resolution shows benefits in resolving daily precipitation events for the spring period as well as 

for the spring and summer periods in the WLEB. However for other seasons and at longer 

temporal averaging, boundary conditions and physical parameterizations may still play an 

important role in understanding and reducing the regional bias in simulated precipitation.  

Further analysis is needed to determine the dynamical drivers of the spring wet biases that is 

consistent in the global and regional models, understand how these biases affect future 

projections of precipitation in the region, and relay these insights to aid adaptation planning 

around the Great Lakes Basin.  
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Figure Captions 

Figure 1. Boundaries representing the Great Lakes Basin (GLB) and Western Lake Erie Basin 

(WLEB). The GLB includes the U.S. Great Lakes states (U.S) and Canada, and the WLEB 

includes the geographic extent of the watersheds that drain into the western basin of Lake Erie, 

including southeastern Michigan, northwestern Ohio, and northeastern Indiana.  

 

Figure 2. Monthly averages for the historical period (1980-1999) spatially averaged over the 

Great Lakes Basin (GLB) for (a) the CMIP5 ensemble, (b) the NARCCAP ensemble, and (c) the 

RCM-HiRes ensemble.  Individual model members in colored lines, the multi-model average in 

solid black lines, and the Climate Prediction Center observed precipitation in black dotted lines. 

Monthly average changes projected for mid-century (2041-2060) normalized to a percent change 

from the historical period for (d) the CMIP5 ensemble, (e), the NARCCAP ensemble, and (c) the 

RCM-HiRes ensemble. 

 

Figure 3.  As for Figure 2, but for the Western Lake Erie Basin (WLEB) 

 

Figure 4. Historical (1980-1999) probabilities of precipitation events (binned every 6 mm day-1) 

spatially averaged over the GLB for (a) MAM, (b) JJA, (c) SON and (d) DJF.  Mid-century 

(2041-2060) projections of probability change for each bin, calculated as the difference from 

historical values for the GLB for (d) MAM, (e) JJA, (f) SON and (g) DJF.  Precipitation bins are 

This article is protected by copyright. All rights reserved.



 38 

averaged for each ensemble, including the CMIP5 ensemble (red), the NARCCAP ensemble 

(green) and the RCM-HiRes ensemble (blue). Numbers above each bin denote the total number 

of model members that simulated precipitation in that bin.  CPC observations are denoted with a 

black X. 

 

Figure 5.  As for Figure 4, but for the WLEB region. 

 

Figure 6.  Maximum probabilities for each precipitation size (bins spaced every 6 mm day-1) 

extracted from the GLB region before averaging. Ensemble probability distribution functions are 

shown for each season; (a-d) CMIP5, (e-h) NARCCAP, (i-l) RCM-HiRes.  CPC observations 

are denoted with a black X. 

 

Figure 7. Maximum probabilities for each precipitation size (bins spaced every 6 mm day-1) 

extracted from the WLEB region before averaging. Ensemble probability distribution functions 

are shown for each season; (a-d) CMIP5, (e-h) NARCCAP, (i-l) RCM-HiRes. CPC observations 

are denoted with a black X. 

 

Figure 8.  99th percentile DJF precipitation (mm d-1) (for days with greater than 1 mm d-1 of 

precipitation) over the WLEB grid cells for (a) observations and (b-e) the NARCCAP ensemble 

members (Table 1), including (b) CRCM-CGCM3, (c) CRCM-CCSM, (d) RCM3-CGCM3, (d) 
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RCM3-CGCM3, (e) RCM3-GFDL, (f). EPC2-GFDL, (g) EPC2-HadCM3, (h) MM5I-HadCM3, 

(i) MM5I-CCSM, (j) WRFG-CGCM3, (k) HRM3-HadCM3. Darker blue colors indicate higher 

values of extreme precipitation within that grid cell.  

 

Figure 9. Monthly averages for the historical period (1980-1999) spatially averaged over the 

GLB and WLEB. Climate Prediction Center values displayed in dashed lines. (a,b) Models with 

lakes; including 3 of the CMIP5 Atmosphere-Ocean models, as well as the complete NARCCAP 

and Hi-Res ensembles (Table 1). (c,d) Models without lakes; including 8 of the CMIP5 

Atmosphere-Ocean models (Table 1). 
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Table 1. Global and regional model ensemble details. 

Model Type and 
Emission Scenario 

Atmospheric 
Horizontal 
Resolution 

Gridpoints 
(lat × lon=total) 

Lake 
Mask 

 
Lake 
Temp 

 
Lake 
Icea 

    
  

GLOBAL, RCP 8.5 (lat x lon,°) WLEB GLB 
 

  

ACCESS1.0 1.25 x 1.875° 3x2=6 9x11=99 NO   

ACCESS1.3 1.25 x 1.875° 3x2=6 9x11=99 NO   

CCSM4 0.9 x 1.25° 4x3=12 11x17=187 NO   

CESM1-CAM5 0.9 x 1.25° 4x3=12 11x17=187 NO   

CMCC-CM 0.75 x0.75° 4x5=20 14x27=378 YES 1D b Yes 

CMCC-CMS 1.875 x 1.875° 2x2=4 6x11=66 YES 1D  Yes 

CSIRO-Mk3.6.0 1.875 x 1.875° 2x2=4 6x11=66 NO   

EC-EARTH 1.125 x 1.125° 2x4=8 9x18=162 YES Interp c No 

FGOALS-g2 2.8125 x 2.8125° 1x1=1 4x7=28 NO   

HadGEM2-AO 1.25 x 1.875° 3x2=6 9x11=99 NO   

MIROC5 1.4 x 1.4° 2x2=4 7x14=98 NO   

MRI-CGCM3 1.125 x 1.125° 2x4=8 9x18=162 NO   

     
  

REGIONAL, SRES A2 (lat x lon, km) 
   

  

(RCM-Driving GCM) 
   

  

CRCM-CGCM3 50 x 50 9x8=72 30x38=1140 YES 1D Yes 

CRCM-CCSM 50 x 50 9x8=72 30x38=1140 YES 1D Yes 

ECP2-GFDL 50 x 50 9x8=72 31x39=1209 YES Interp No 

EPC2-HadCM3 50 x 50 9x8=72 31x39=1209 YES Interp No 

HRM3-HadCM3 50 x 50 8x7=56 28x35=980 YES Interp No 

MM5I-CCSM 50 x 50 8x6=48 26x33=858 YES Interp No 

MM5I-HadCM3 50 x 50 8x6=48 26x33=858 YES Interp No 

RCM3-CGCM3 50 x 50 7x7=49 27x34=918 YES Interp No 

RCM3-GFDL 50 x 50 7x7=49 27x34=918 YES Interp No 

WRFG-CGCM3 50 x 50 8x6=48 26x33=858 YES Interp Yes 

     
  

REGIONAL, RCP 8.5 (lat x lon, km) 
   

  

RCM4-HadGEM 25 x 25 15x14=210 53x68=3604 YES Interp No 

RCM4-GFDL 25 x 25 15x14=210 53x68=3604 YES Interp No 
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a Lake ice present in Great Lakes region 

b 1D Lake Model for inland water points [Goyette et al., 2000] 

c Lake surface temperature interpolated from nearest lake point (if in parent GCM) or from the 

nearest sea surface temperature (e.g., from coastal regions) 
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